Physics-informed deep learning for incompressible laminar flows

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows

We compare the lattice Boltzmann equation (LBE) and the gas-kinetic scheme (GKS) applied to 2D incompressible laminar flows. Although both methods are derived from the Boltzmann equation thus share a common kinetic origin, numerically they are rather different. The LBE is a finite difference method, while the GKS is a finite-volume one. In addition, the LBE is valid for near incompressible flow...

متن کامل

Development length of laminar magnetohydrodynamics pipe flows

In this article, a laminar magnetohydrodynamics (MHD) developing flow of an incompressible electrically conducting fluid subjected to an external magnetic field is considered. The aim of the study is to propose a correlation for computing the development length of the laminar MHD developing flow in a pipe. A numerical approach is considered to solve the problem. In the first step, the numerical...

متن کامل

Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations

We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this second part of our two-part treatise, we focus on the problem of data-driven discovery of partial differential equations. Depending on whether the available data is sca...

متن کامل

Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations

We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this two part treatise, we present our developments in the context of solving two main classes of problems: data-driven solution and data-driven discovery of partial differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Applied Mechanics Letters

سال: 2020

ISSN: 2095-0349

DOI: 10.1016/j.taml.2020.01.039